Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 148, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643141

RESUMO

BACKGROUND: Sparganosis is a rare zoonotic disease caused by plerocercoid larvae of the genera Spirometra or Sparganum (Cestoda: Diphyllobothriidae). The larvae of Spirometra generally do not undergo asexual reproduction, whereas those of Sparganum can induce proliferative lesions in infected tissues. This paper presents an unusual case of proliferative sparganosis due to infection with Spirometra mansoni in a cat, normally considered a definitive host of the species. CASE PRESENTATION: A 9-year-old male domestic cat was presented with a mass on the right side of the face that underwent progressive enlargement for 1 month. The morphological and histopathological examinations revealed multiple asexual proliferative cestode larvae in the lesions, suggestive of proliferative sparganosis. Next-generation sequencing analysis of formalin-fixed and paraffin-embedded specimens of surgically excised tissue indicated that the worm was Spirometra mansoni. CONCLUSION: Although S. mansoni a common tapeworm species found in the small intestine of domestic cats and dogs in Japan, proliferative sparganosis is extremely rare. This is the first confirmed case of proliferative sparganosis due to infection with S. mansoni in cat.


Assuntos
Doenças do Gato , Infecções por Cestoides , Doenças do Cão , Esparganose , Spirometra , Masculino , Gatos , Animais , Cães , Spirometra/genética , Esparganose/diagnóstico , Esparganose/veterinária , Esparganose/etiologia , Plerocercoide , Infecções por Cestoides/diagnóstico , Infecções por Cestoides/veterinária , Japão , Doenças do Gato/diagnóstico , Doenças do Cão/diagnóstico
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1894): 20230004, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38008122

RESUMO

The Strongyloides genus of parasitic nematodes have a fascinating life cycle and biology, but are also important pathogens of people and a World Health Organization-defined neglected tropical disease. Here, a community of Strongyloides researchers have posed thirteen major questions about Strongyloides biology and infection that sets a Strongyloides research agenda for the future. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.


Assuntos
Estágios do Ciclo de Vida , Strongyloides , Animais , Humanos
3.
Microb Ecol ; 86(4): 2923-2933, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658881

RESUMO

Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96 N. tenuis individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with N. tenuis were identified: Rickettsia, two strains of Wolbachia, Spiroplasma, Providencia, Serratia, Pseudochrobactrum, Lactococcus, and Stenotrophomonas. Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators, Rickettsia, Wolbachia, and Spiroplasma, was performed on a larger sample size (n = 360) of N. tenuis individuals; the most prevalent symbiont was Rickettsia (69.7%), followed by Wolbachia (39.2%) and Spiroplasma (6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of Rickettsia was significantly correlated with latitude and temperature, while that of Wolbachia and Spiroplasma was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the N. tenuis microbiome is typical for predatory arthropods rather than sap-feeding insects. Rickettsia and Wolbachia were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop N. tenuis as a biological control agent.


Assuntos
Hemípteros , Microbiota , Rickettsia , Spiroplasma , Wolbachia , Humanos , Animais , Agentes de Controle Biológico , Hemípteros/genética , RNA Ribossômico 16S/genética , Rickettsia/genética , Wolbachia/genética , Simbiose
4.
Nucleic Acids Res ; 51(15): 8035-8047, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37526286

RESUMO

Obtaining sufficient genetic material from a limited biological source is currently the primary operational bottleneck in studies investigating biodiversity and genome evolution. In this study, we employed multiple displacement amplification (MDA) and Smartseq2 to amplify nanograms of genomic DNA and mRNA, respectively, from individual Caenorhabditis elegans. Although reduced genome coverage was observed in repetitive regions, we produced assemblies covering 98% of the reference genome using long-read sequences generated with Oxford Nanopore Technologies (ONT). Annotation with the sequenced transcriptome coupled with the available assembly revealed that gene predictions were more accurate, complete and contained far fewer false positives than de novo transcriptome assembly approaches. We sampled and sequenced the genomes and transcriptomes of 13 nematodes from early-branching species in Chromadoria, Dorylaimia and Enoplia. The basal Chromadoria and Enoplia species had larger genome sizes, ranging from 136.6 to 738.8 Mb, compared with those in the other clades. Nine mitogenomes were fully assembled, and displayed a complete lack of synteny to other species. Phylogenomic analyses based on the new annotations revealed strong support for Enoplia as sister to the rest of Nematoda. Our result demonstrates the robustness of MDA in combination with ONT, paving the way for the study of genome diversity in the phylum Nematoda and beyond.


Assuntos
Caenorhabditis elegans , Genoma , Animais , Caenorhabditis elegans/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA
5.
Artigo em Inglês | MEDLINE | ID: mdl-37358383

RESUMO

Strain 020920NT was isolated from the estuary of the Kaeda river in the Miyazaki prefecture in Japan. Phylogenetic analysis based on the 16S rRNA gene showed the strain's close evolutionary relationship with bacteria from the genus Grimontia, in the family Vibrionaceae. Phenotypic and chemotaxonomic features of the strain were investigated. Whole genome sequencing revealed that the strain 020920NT genome consists of two chromosomes and a plasmid, for a total of 5.52 Mbp. Calculations of whole genome average nucleotide identity and phylogenetic analysis based on the whole genome sequence showed that the strain represents a new species in the genus Grimontia, for which we propose the name Grimontia kaedaensis sp. nov. with the type strain 020920NT (=LMG 32507T=JCM 34978T).


Assuntos
Água do Mar , Vibrionaceae , Análise de Sequência de DNA , Água do Mar/microbiologia , Ácidos Graxos/química , Estuários , Rios , Filogenia , RNA Ribossômico 16S/genética , Japão , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases
6.
Genome Biol Evol ; 15(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37071793

RESUMO

Why the recently discovered nematode Caenorhabditis inopinata differs so greatly from its sibling species Caenorhabditis elegans remains unknown. A previous study showed that C. inopinata has more transposable elements (TEs), sequences that replicate and move autonomously throughout the genome, potentially altering the expression of neighboring genes. In this study, we focused on how the body size of this species has evolved and whether TEs could affect the expression of genes related to species-specific traits such as body size. First, we compared gene expression levels between C. inopinata and C. elegans in the L4 larval and young adult stages-when growth rates differ most prominently between these species-to identify candidate genes contributing to their differences. The results showed that the expression levels of collagen genes were consistently higher in C. inopinata than in C. elegans and that some genes related to cell size were differentially expressed between the species. Then, we examined whether genes with TE insertions are differentially expressed between species. Indeed, the genes featuring C. inopinata-specific TE insertions had higher expression levels in C. inopinata than in C. elegans. These upregulated genes included those related to body size, suggesting that these genes could be candidates for artificial TE insertion to examine the role of TEs in the body size evolution of C. inopinata.


Assuntos
Caenorhabditis elegans , Caenorhabditis , Animais , Caenorhabditis elegans/genética , Caenorhabditis/genética , Elementos de DNA Transponíveis , Tamanho Corporal/genética
7.
PLoS Negl Trop Dis ; 17(4): e0011259, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014918

RESUMO

BACKGROUND: Diarrheagenic Escherichia coli (DEC) is a group of bacterial pathogens that causes life-threatening diarrhea in children in developing countries. However, there is limited information on the characteristics of DEC isolated from patients in these countries. A detailed genomic analysis of 61 DEC-like isolates from infants with diarrhea was performed to clarify and share the characteristics of DEC prevalent in Vietnam. PRINCIPAL FINDINGS: DEC was classified into 57 strains, including 33 enteroaggregative E. coli (EAEC) (54.1%), 20 enteropathogenic E. coli (EPEC) (32.8%), two enteroinvasive E. coli (EIEC) (3.3%), one enterotoxigenic E. coli (ETEC), and one ETEC/EIEC hybrid (1.6% each), and surprisingly into four Escherichia albertii strains (6.6%). Furthermore, several epidemic DEC clones showed an uncommon combination of pathotypes and serotypes, such as EAEC Og130:Hg27, EAEC OgGp9:Hg18, EAEC OgX13:H27, EPEC OgGp7:Hg16, and E. albertii EAOg1:HgUT. Genomic analysis also revealed the presence of various genes and mutations associated with antibiotic resistance in many isolates. Strains that demonstrate potential resistance to ciprofloxacin and ceftriaxone, drugs recommended for treating childhood diarrhea, accounted for 65.6% and 41%, respectively. SIGNIFICANCE: Our finding indicate that the routine use of these antibiotics has selected resistant DECs, resulting in a situation where these drugs do not provide in therapeutic effects for some patients. Bridging this gap requires continuous investigations and information sharing regarding the type and distribution of endemic DEC and E. albertii and their antibiotic resistance in different countries.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Criança , Humanos , Lactente , Infecções por Escherichia coli/microbiologia , Vietnã/epidemiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Escherichia coli Enteropatogênica/genética , Escherichia coli Enterotoxigênica/genética , Genômica
8.
Mol Ecol Resour ; 23(4): 905-919, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36597348

RESUMO

Aphelenchoides besseyi is a plant-parasitic nematode (PPN) in the family Aphelenchoididae capable of infecting more than 200 plant species. A. besseyi is also a species complex with strains exhibiting varying pathogenicity to plants. We present the genome and annotations of six Aphelenchoides species, four of which belonged to the A. besseyi species complex. Most Aphelenchoides genomes have a size of 44.7-47.4 Mb and are among the smallest in clade IV, with the exception of A. fujianensis, which has a size of 143.8 Mb and is one of the largest. Phylogenomic analysis successfully delimited the species complex into A. oryzae and A. pseudobesseyi and revealed a reduction of transposon elements in the last common ancestor of Aphelenchoides. Synteny analyses between reference genomes indicated that three chromosomes in A. besseyi were derived from fission and fusion events. A systematic identification of horizontal gene transfer (HGT) genes across 27 representative nematodes allowed us to identify two major episodes of acquisition corresponding to the last common ancestor of clade IV or major PPNs, respectively. These genes were mostly lost and differentially retained between clades or strains. Most HGT events were acquired from bacteria, followed by fungi, and also from plants; plant HGT was especially prevalent in Bursaphelenchus mucronatus. Our results comprehensively improve the understanding of HGT in nematodes.


Assuntos
Transferência Genética Horizontal , Nematoides , Animais , Nematoides/genética , Filogenia , Plantas/genética , Plantas/parasitologia
9.
Nat Ecol Evol ; 7(3): 424-439, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717742

RESUMO

Large-scale genome-structural evolution is common in various organisms. Recent developments in speciation genomics revealed the importance of inversions, whereas the role of other genome-structural rearrangements, including chromosome fusions, have not been well characterized. We study genomic divergence and reproductive isolation of closely related nematodes: the androdioecious (hermaphroditic) model Pristionchus pacificus and its dioecious sister species Pristionchus exspectatus. A chromosome-level genome assembly of P. exspectatus using single-molecule and Hi-C sequencing revealed a chromosome-wide rearrangement relative to P. pacificus. Strikingly, genomic characterization and cytogenetic studies including outgroup species Pristionchus occultus indicated two independent fusions involving the same chromosome, ChrIR, between these related species. Genetic linkage analysis indicated that these fusions altered the chromosome-wide pattern of recombination, resulting in large low-recombination regions that probably facilitated the coevolution between some of the ~14.8% of genes across the entire genomes. Quantitative trait locus analyses for hybrid sterility in all three sexes revealed that major quantitative trait loci mapped to the fused chromosome ChrIR. While abnormal chromosome segregations of the fused chromosome partially explain hybrid female sterility, hybrid-specific recombination that breaks linkage of genes in the low-recombination region was associated with hybrid male sterility. Thus, recent chromosome fusions repatterned recombination rate and drove reproductive isolation during Pristionchus speciation.


Assuntos
Nematoides , Isolamento Reprodutivo , Animais , Feminino , Masculino , Nematoides/genética , Cromossomos , Genoma , Recombinação Genética
10.
BMC Cancer ; 22(1): 1351, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564758

RESUMO

BACKGROUND: Glioma-initiating cells (GICs) are the source of glioma cells that can self-renew, have pluripotency, and are treatment-resistant, so are the starting point for relapse and eventual death despite multimodality therapy. L-[methyl-11C] methionine PET has observed high accumulation at the time of recurrence, it is important to understand the mechanism of tumor cell activation caused by the reorganization of methionine metabolism.  METHODS: We cultured cells in methionine-deprived culture medium for comprehensive analysis. Based on the obtained results, the possible target molecules were chemically inhibited and the respective markers were analyzed. RESULTS: Methionine depletion markedly decreased proliferation and increased cell death of GICs. Decreased S-adenosyl-methionine, which is synthesized intracellularly by catalyzed by methionine adenosyltransferase using methionine, triggered the following: (i) global DNA demethylation, (ii) hyper-methylation of signaling pathways regulating pluripotency of stem cells, (iii) decreased expression of the core-genes and pluripotent markers of stem cells including FOXM1, SOX2, SOX4, PROM1, and OLIG2, (iv) decreased cholesterol synthesis and increased excretion mainly through decreased SREBF2, and (v) down-regulation of the large subunit of ribosomal protein configured 28S and ACA43, small nucleolar RNA guiding the pseudouridylation of 28S rRNA, which is essential for translation. In addition, inhibition of cholesterol synthesis with statin resulted in a phenotype similar to that of methionine depletion and decreases in stem cell markers and small nucleolar RNA ACA43. Moreover, suppression of FOXM1 decreased stem cell markers such as SOX4 and PROM1. The gene expression profile for cholesterol production was obtained from the Ivy Glioblastoma Atlas Project database and compared between tumor cells with relatively low methionine levels in areas of pseudopalisading arrangement around necrosis and tumor cells in the infiltrating region, showing that cells in the infiltrating region have higher capacity to produce cholesterol. CONCLUSIONS: Methionine metabolism is closely related with self-renewal, pluripotency, and cell death in GICs through modification of cholesterol biosynthesis, especially in the SREBF2-FOXM1 and ACA43 axis with modification of rRNA.


Assuntos
Glioma , Metionina , Humanos , Metionina/farmacologia , Metionina/metabolismo , RNA Nucleolar Pequeno/metabolismo , Células-Tronco Neoplásicas/metabolismo , Recidiva Local de Neoplasia/patologia , Glioma/patologia , Morte Celular , Racemetionina/metabolismo , Colesterol/metabolismo , Fatores de Transcrição SOXC
11.
BMC Genomics ; 23(1): 765, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418933

RESUMO

BACKGROUND: The first metazoan genome sequenced, that of Caenorhabditis elegans, has motivated animal genome evolution studies. To date > 50 species from the genus Caenorhabditis have been sequenced, allowing research on genome variation. RESULTS: In the present study, we describe a new gonochoristic species, Caenorhabditis niphades n. sp., previously referred as C. sp. 36, isolated from adult weevils (Niphades variegatus), with whom they appear to be tightly associated during its life cycle. Along with a species description, we sequenced the genome of C. niphades n. sp. and produced a chromosome-level assembly. A genome comparison highlighted that C. niphades n. sp. has the smallest genome (59 Mbp) so far sequenced in the Elegans supergroup, despite being closely related to a species with an exceptionally large genome, C. japonica. CONCLUSIONS: The compact genome of C. niphades n. sp. can serve as a key resource for comparative evolutionary studies of genome and gene number expansions in Caenorhabditis species.


Assuntos
Caenorhabditis , Gorgulhos , Animais , Gorgulhos/genética , Madeira , Genoma , Caenorhabditis elegans/genética
12.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196618

RESUMO

Endoderm specification in Caenorhabditis elegans occurs through a network in which maternally provided SKN-1/Nrf, with additional input from POP-1/TCF, activates the GATA factor cascade MED-1,2→END-1,3→ELT-2,7. Orthologues of the MED, END and ELT-7 factors are found only among nematodes closely related to C. elegans, raising the question of how gut is specified in their absence in more distant species in the genus. We find that the C. angaria, C. portoensis and C. monodelphis orthologues of the GATA factor gene elt-3 are expressed in the early E lineage, just before their elt-2 orthologues. In C. angaria, Can-pop-1(RNAi), Can-elt-3(RNAi) and a Can-elt-3 null mutation result in a penetrant 'gutless' phenotype. Can-pop-1 is necessary for Can-elt-3 activation, showing that it acts upstream. Forced early E lineage expression of Can-elt-3 in C. elegans can direct the expression of a Can-elt-2 transgene and rescue an elt-7 end-1 end-3; elt-2 quadruple mutant strain to viability. Our results demonstrate an ancestral mechanism for gut specification and differentiation in Caenorhabditis involving a simpler POP-1→ELT-3→ELT-2 gene network.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis , Animais , Endoderma/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis/genética , Caenorhabditis/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Redes Reguladoras de Genes
13.
Microb Genom ; 8(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35930328

RESUMO

Approximately 200 O-serogroups of Vibrio cholerae have already been identified; however, only 2 serogroups, O1 and O139, are strongly related to pandemic cholera. The study of non-O1 and non-O139 strains has hitherto been limited. Nevertheless, there are other clinically and epidemiologically important serogroups causing outbreaks with cholera-like disease. Here, we report a comprehensive genome analysis of the whole set of V. cholerae O-serogroup reference strains to provide an overview of this important bacterial pathogen. It revealed structural diversity of the O-antigen biosynthesis gene clusters located at specific loci on chromosome 1 and 16 pairs of strains with almost identical O-antigen biosynthetic gene clusters but differing in serological patterns. This might be due to the presence of O-antigen biosynthesis-related genes at secondary loci on chromosome 2.


Assuntos
Cólera , Vibrio cholerae , Cólera/epidemiologia , Cólera/microbiologia , Cromossomos , Genômica , Humanos , Antígenos O/genética , Sorogrupo , Vibrio cholerae/genética
14.
Sci Rep ; 12(1): 10156, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710810

RESUMO

The small RNA (sRNA) pathways identified in the model organism Caenorhabditis elegans are not widely conserved across nematodes. For example, the PIWI pathway and PIWI-interacting RNAs (piRNAs) are involved in regulating and silencing transposable elements (TE) in most animals but have been lost in nematodes outside of the C. elegans group (Clade V), and little is known about how nematodes regulate TEs in the absence of the PIWI pathway. Here, we investigated the role of sRNAs in the Clade IV parasitic nematode Strongyloides ratti by comparing two genetically identical adult stages (the parasitic female and free-living female). We identified putative small-interfering RNAs, microRNAs and tRNA-derived sRNA fragments that are differentially expressed between the two adult stages. Two classes of sRNAs were predicted to regulate TE activity including (i) a parasite-associated class of 21-22 nt long sRNAs with a 5' uridine (21-22Us) and a 5' monophosphate, and (ii) 27 nt long sRNAs with a 5' guanine/adenine (27GAs) and a 5' modification. The 21-22Us show striking resemblance to the 21U PIWI-interacting RNAs found in C. elegans, including an AT rich upstream sequence, overlapping loci and physical clustering in the genome. Overall, we have shown that an alternative class of sRNAs compensate for the loss of piRNAs and regulate TE activity in nematodes outside of Clade V.


Assuntos
MicroRNAs , Nematoides , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Elementos de DNA Transponíveis/genética , Feminino , MicroRNAs/genética , Nematoides/genética , Nematoides/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
15.
Nat Commun ; 13(1): 2574, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546147

RESUMO

Sex determination mechanisms evolve surprisingly rapidly, yet little is known in the large nematode phylum other than for Caenorhabditis elegans, which relies on chromosomal XX-XO sex determination and a dosage compensation mechanism. Here we analyze by sex-specific genome sequencing and genetic analysis sex determination in two fungal feeding/plant-parasitic Bursaphelenchus nematodes and find that their sex differentiation is more likely triggered by random, epigenetic regulation than by more well-known mechanisms of chromosomal or environmental sex determination. There is no detectable difference in male and female chromosomes, nor any linkage to sexual phenotype. Moreover, the protein sets of these nematodes lack genes involved in X chromosome dosage counting or compensation. By contrast, our genetic screen for sex differentiation mutants identifies a Bursaphelenchus ortholog of tra-1, the major output of the C. elegans sex determination cascade. Nematode sex determination pathways might have evolved by "bottom-up" accretion from the most downstream regulator, tra-1.


Assuntos
Proteínas de Caenorhabditis elegans , Transtornos do Desenvolvimento Sexual , Nematoides , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transtornos do Desenvolvimento Sexual/genética , Mecanismo Genético de Compensação de Dose , Epigênese Genética , Feminino , Humanos , Masculino , Nematoides/genética , Nematoides/metabolismo , Cromossomo X/metabolismo
16.
Front Cell Infect Microbiol ; 11: 711144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350134

RESUMO

Most bacteria naturally release spherical lipid-bilayered extracellular vesicles (EVs) containing proteins, nucleic acids, and virulence-related molecules, thus contributing to diverse biological functions including transport of virulence factors. The group A streptococcus, Streptococcus pyogenes (GAS), a major human pathogen, also releases EVs; however, it remains unclear how GAS EVs interact physiologically and pathologically with host cells, and what the differences are between invasive and non-invasive strains. The proteome profile in this study revealed that GAS EVs enclosed many virulence-related proteins such as streptolysin O and NAD-glycohydrolase, facilitating their pathogenicity, and invasive GAS EVs were more abundant than non-invasive counterparts. In terms of biological effects, invasive GAS EVs showed slo-dependent cytotoxic activity and the induction of cytokine expression, contributing to GAS pathogenicity directly. Although non-invasive GAS EVs did not show cytotoxic activity, they may be utilized as a means to prevent antibacterial mechanisms such as autophagy, leading to enhancement of their own survival in the intracellular environment after the infection. These results suggest that invasive and non-invasive GAS EVs play different roles in GAS infection strategy and pathogenicity. Our findings also indicate that EVs could be a key factor for GAS pathogenicity in GAS-host interactions.


Assuntos
Vesículas Extracelulares , Monócitos/microbiologia , Streptococcus pyogenes , Proteínas de Bactérias , Humanos , Inflamação , NAD+ Nucleosidase , Virulência , Fatores de Virulência
17.
Front Microbiol ; 12: 681175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122392

RESUMO

Tellurite is highly toxic to most bacteria owing to its strong oxidative ability. However, some bacteria demonstrate tellurite resistance. In particular, some Escherichia coli strains, including Shiga toxin-producing E. coli O157:H7, are known to be resistant to tellurite. This resistance is involved in ter operon, which is usually located on a prophage-like element of the chromosome. The characteristics of the ter operon have been investigated mainly by genome analysis of pathogenic E. coli; however, the distribution and structural characteristics of the ter operon in other E. coli are almost unknown. To clarify these points, we examined 106 E. coli strains carrying the ter operon from various animals. The draft genomes of 34 representative strains revealed that ter operons were clearly classified into four subtypes, ter-type 1-4, at the nucleotide sequence level. Complete genomic sequences revealed that operons belonging to three ter-types (1, 3, and 4) were located on the prophage-like elements on the chromosome, whereas the ter-type 2 operon was located on the IncHI2 plasmid. The positions of the tRNASer, tRNAMet, and tRNAPhe indicated the insertion sites of elements carrying the ter operons. Using the PCR method developed in this study, 106 strains were classified as type 1 (n = 66), 2 (n = 13), 3 (n = 8), and 4 (n = 17), and two strains carried both types 1 and 2. Furthermore, significant differences in the minimum inhibitory concentration (MIC) of tellurite were observed between strains carrying ter-type 4 and the others (p < 0.05). The ter-type was also closely related to the isolation source, with types 2 and 4 associated with chickens and deer, respectively. This study provided new insights related not only to genetic characteristics of the ter operons, but also to phenotypic and ecological characteristics that may be related to the diversity of the operon.

18.
Commun Biol ; 4(1): 649, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059788

RESUMO

The cryptic parasite Sparganum proliferum proliferates in humans and invades tissues and organs. Only scattered cases have been reported, but S. proliferum infection is always fatal. However, S. proliferum's phylogeny and life cycle remain enigmatic. To investigate the phylogenetic relationships between S. proliferum and other cestode species, and to examine the mechanisms underlying pathogenicity, we sequenced the entire genomes of S. proliferum and a closely related non-life-threatening tapeworm Spirometra erinaceieuropaei. Additionally, we performed larvae transcriptome analyses of S. proliferum plerocercoid to identify genes involved in asexual reproduction in the host. The genome sequences confirmed that the S. proliferum has experienced a clearly distinct evolutionary history from S. erinaceieuropaei. Moreover, we found that nonordinal extracellular matrix coordination allows asexual reproduction in the host, and loss of sexual maturity in S. proliferum are responsible for its fatal pathogenicity to humans. Our high-quality reference genome sequences should be valuable for future studies of pseudophyllidean tapeworm biology and parasitism.


Assuntos
Plerocercoide/genética , Animais , Sequência de Bases/genética , Proliferação de Células/genética , Cestoides/classificação , Cestoides/genética , Infecções por Cestoides/genética , Infecções por Cestoides/parasitologia , Genoma/genética , Humanos , Larva/classificação , Larva/genética , Estágios do Ciclo de Vida/genética , Filogenia , Plerocercoide/classificação , Spirometra/classificação , Spirometra/genética
19.
PLoS Pathog ; 17(6): e1009649, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34081755

RESUMO

Parasitic helminths can reside in humans owing to their ability to disrupt host protective immunity. Receptor for advanced glycation end products (RAGE), which is highly expressed in host skin, mediates inflammatory responses by regulating the expression of pro-inflammatory cytokines and endothelial adhesion molecules. In this study, we evaluated the effects of venestatin, an EF-hand Ca2+-binding protein secreted by the parasitic helminth Strongyloides venezuelensis, on RAGE activity and immune responses. Our results demonstrated that venestatin bound to RAGE and downregulated the host immune response. Recombinant venestatin predominantly bound to the RAGE C1 domain in a Ca2+-dependent manner. Recombinant venestatin effectively alleviated RAGE-mediated inflammation, including footpad edema in mice, and pneumonia induced by an exogenous RAGE ligand. Infection experiments using S. venezuelensis larvae and venestatin silencing via RNA interference revealed that endogenous venestatin promoted larval migration from the skin to the lungs in a RAGE-dependent manner. Moreover, endogenous venestatin suppressed macrophage and neutrophil accumulation around larvae. Although the invasion of larvae upregulated the abundance of RAGE ligands in host skin tissues, mRNA expression levels of tumor necrosis factor-α, cyclooxygenase-2, endothelial adhesion molecules vascular cell adhesion protein-1, intracellular adhesion molecule-1, and E-selectin were suppressed by endogenous venestatin. Taken together, our results indicate that venestatin suppressed RAGE-mediated immune responses in host skin induced by helminthic infection, thereby promoting larval migration. The anti-inflammatory mechanism of venestatin may be targeted for the development of anthelminthics and immunosuppressive agents for the treatment of RAGE-mediated inflammatory diseases.


Assuntos
Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Strongyloides/imunologia , Strongyloides/metabolismo , Estrongiloidíase/metabolismo , Animais , Larva/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Strongyloides/patogenicidade
20.
Sci Rep ; 11(1): 6720, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762598

RESUMO

Caenorhabditis auriculariae, which was morphologically described in 1999, was re-isolated from a Platydema mushroom-associated beetle. Based on the re-isolated materials, some morphological characteristics were re-examined and ascribed to the species. In addition, to clarify phylogenetic relationships with other Caenorhabditis species and biological features of the nematode, the whole genome was sequenced and assembled into 109.5 Mb with 16,279 predicted protein-coding genes. Molecular phylogenetic analyses based on ribosomal RNA and 269 single-copy genes revealed the species is closely related to C. sonorae and C. monodelphis placing them at the most basal clade of the genus. C. auriculariae has morphological characteristics clearly differed from those two species and harbours a number of species-specific gene families, indicating its usefulness as a new outgroup species for Caenorhabditis evolutionary studies. A comparison of carbohydrate-active enzyme (CAZy) repertoires in genomes, which we found useful to speculate about the lifestyle of Caenorhabditis nematodes, suggested that C. auriculariae likely has a life-cycle with tight-association with insects.


Assuntos
Caenorhabditis/classificação , Caenorhabditis/genética , Genoma Helmíntico , Genômica , Filogenia , Animais , Caenorhabditis/ultraestrutura , Evolução Molecular , Genes de Helmintos , Genômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA